Evaluation of the feasibility of using satellite data in the extension of short series of precipitation for ground stations in the context of the River Taquiña Catchment - Cochabamba, Bolivia

Authors

Claude Le Noir, Universidad Privada del Valle; Nahúm Cayo, Universidad Privada del Valle; Alejandra Araoz, Universidad Privada del Valle; Mauricio Veliz, Universidad Privada del Valle; Andrés Cardoso, Universidad Privada del Valle; Rodrigo Fuentes, Universidad Privada del Valle; Marcelo Coria, Universidad Privada del Valle; Joaquin Humberto Aquino Rocha, Universidad Federal do Rio de Janeiro

Keywords:

Criterios de bondad de ajuste, Ecuaciones de regresión , Extensión de una serie, Precipitación medida en superficie de la tierra , Precipitación satelital.

Synopsis

The objective of the present investigation is to evaluate the feasibility of the use of precipitation 
data registered by remote satellite sensors, in order to extend in time the short series of precipitation 
registered in the surface stations of the Taquiña-Cochabamba River Catchment, Bolivia. Initially, 
a multi-criteria analysis was carried out, it was determined that, for this case, the satellite service 
provider CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) is the best 
option out of eight previously selected providers (CFSR, CHIRPS, ERAS, GRIDMET, PRISM, 
MERRA2, TERRACLIMATE and TRMM/GPM). CHIRPS work with daily data, covers the Taquiña 
River Basin, has a high spatial resolution of 4.8 x 4.8 km, is based on adjustments with data from 
ground stations, and covers a considerable period of data (1981 to date). Then, regression formulas 
were calibrated for the monthly, daily and annual maximum daily precipitation series, based on the 
common data period (1993 to 2003) considering data recorded on the surface and satellite data. The 
goodness-of-fit criteria for the coefficient of determination (R2), Nash-Sutcliffe coefficient (NSE), 
PBIAS and RSR were verified. The regressions presented a good fit for the monthly precipitation 
series (R2
>0.82 and NSE>0.72), unlike the daily and maximum annual daily precipitation as 
synchronous series. For the maximum annual daily precipitation, as an asynchronous ordered 
series, a better fit was obtained (R2
>0.64 and NSE>0.64), allowing the extension of the series from 
11 to 39 years. The maximum discharges were calculated using the program HEC-HMS based on 
the series extended in time of the maximum annual daily precipitation. A good correspondence 
was found with the maximum discharges calculated in the study from Departmental Basin Service 
(2020), which used different hydrological methods.

References

Aksu, H., & Akgül, M. A. (2020). Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theoretical and Applied Climatology, 142(1), 71-84. https://doi.org/10.1016/j.jhydrol.20

https://doi.org/10.1007/s00704-020-03301-5

Asurza Véliz, F. A., Ramos Taipe, C. L., & Lavado Casimiro, W. S. (2018). Evaluación de los productos Tropical Rainfall Measuring Mission (TRMM) y Global Precipitation Measurement (GPM) en el modelamiento hidrológico de la cuenca del río Huancané, Perú. Scientia Agropecuaria, 9(1), 53-62. http://dx.doi.org/10.17268/sci.agropecu.2018.01.06

https://doi.org/10.17268/sci.agropecu.2018.01.06

Bai, L., Shi, C., Li, L., Yang, Y., & Wu, J. (2018). Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sensing, 10(3), 362. https://doi.org/10.3390/rs10030362

Bolívar Vallejo, H. (2020). Informalidad urbanística sobre franjas de seguridad en la metrópoli Kanata: deslizamiento y desborde en Chilimarca en febrero de 2018 (Cochabamba-Bolivia). In XII Seminario Internacional de Investigación en Urbanismo, São Paulo-Lisboa, 2020. Faculdade de Arquitetura da Universidade de Lisboa. https://doi.org/10.5821/siiu.9993

Brown, I. W., McDougall, K., Alam, M. J., Chowdhury, R., & Chadalavada, S. (2022). Calibration of a continuous hydrologic simulation model in the urban Gowrie Creek catchment in Toowoomba, Australia. Journal of Hydrology: Regional Studies, 40, 101021. https://doi.org/10.1016/j.ejrh.2022.101021

Cavalcante, R. B. L., da Silva Ferreira, D. B., Pontes, P. R. M., Tedeschi, R. G., da Costa, C. P. W., & de Souza, E. B. (2020). Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research, 238, 104879. https://doi.org/10.1016/j.atmosres.2020.104879

Centro de Levantamientos Aeroespaciales y Aplicaciones SIG (CLAS UMSS) (2011). Desarrollo para la gestion integral del Parque Nacional Tunari. Cochabamba, Bolivia: Universidad Mayor de San Simón

Delgadillo Montaño, F. (2019). Evaluación de la precipitación mediante distintas fuentes de información satelital y análisis de sensibilidad en modelo lluvia escurrimiento (caso de estudio cuenca del Piraí, Santa Cruz). Proyecto de grado, para optar al Diploma Académico de Licenciatura en Ingeniería Civil, Universidad Mayor de San Simón, 2019.

Dettinger, M., Anderson, J., Anderson, M., Brown, L. R., Cayan, D., & Maurer, E. (2016). Climate change and the Delta. San Francisco Estuary and Watershed Science, 14(3). https://doi.org/10.15447/sfews.2016v14iss3art5

Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., & Ceccato, P. (2018). Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society, 144, 292-312.

https://doi.org/10.1002/qj.3244

Dooge, J. (1973). Linear theory of hydrologic systems (No. 1468). Agricultural Research Service, US Department of Agriculture. Earthdata NASA (2022). "Giovanni", v. 4.36 [Online]. Recuperado de: https://giovanni.gsfc.nasa.gov/giovanni. Consultado el 06 de Febrero de 2022

Golmohammadi, G., Prasher, S., Madani, A. y Rudra R. (2014). Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX y SWAT. Hydrology; I, 20-39. https://doi.org/10.3390/hydrology1010020

https://doi.org/10.3390/hydrology1010020

Google Developers (2022). Climate Engine. Recuperado de https://climateengine.com/. Consultado el 06 de Febrero de 2022.

Gupta, H. V., & Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash‐Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). https://doi.org/10.1029/2011WR010962

https://doi.org/10.1029/2011WR010962

Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil engineering, 10(6), 362.

Kizza, M., Westerberg, I., Rodhe, A. y Ntale, H. L. (2012). Estimating areal rainfall over Lake Victoria and its basin using ground-base and satellite data. Journal of Hydrology; 464, 401-411. https://doi.org/10.1016/j.jhydrol.2012.07.024

https://doi.org/10.1016/j.jhydrol.2012.07.024

Laura, E. L., Obando, O. G. F., Laura, A. L., Quispe Aragón, J.P. (2015). Validación de la precipitación estimada por satélite TRMM y su aplicación en la modelación hidrológica del rio Ramis Puno Perú. Revista Investigación Altoandino, 17 №2, 221-228.

https://doi.org/10.18271/ria.2015.116

Le Noir, C., Cayo, N. Sánchez, H., Arrázola, A., Terán, J., Zampieri, J. (2019). Análisis del flujo de la mazamorra de Tiquipaya-Bolivia 2018: identificación de causas, riesgos y acciones. Journal Boliviano de Ciencias, (46), 46-61.

https://doi.org/10.52428/20758944.v15i46.776

Li, X. H., Zhang, Q., y Xu, C. Y. (2012). Suitability of theTRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in the Xinjiang catchment, Poyang lake basin. Journal of Hydrology, 426-427, 28-38. https://doi.org/10.1016/j.jhydrol.2012.01.013

Li, X., Zhang, Q., y Xu, C., (2014). Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin. Theoretical and Applied Climatology, 115, 713-729. https://doi.org/10.1007/s00704-013-0917-x

Liu, J., Shangguan, D., Liu, S., Ding, Y., Wang, S., & Wang, X. (2019). Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981-2015. Atmospheric Research, 230, 104634. https://doi.org/10.1016/j.atmosres.2019.104634

Mantas, V. M., Liu, Z., Caro, C., y Pereira, A.J.S.C. (2015). Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmospheric Research, 163, 132- 145. https://doi.org/10.1016/j.atmosres.2014.11.012

https://doi.org/10.1016/j.atmosres.2014.11.012

Molnar, P. (2011). Calibration Watershedmodelling, SS 2011. Institute of Environmental Engineering, Chair of Hydrology and Water Resources Management, ETH Zurich, Switzerland.

Nash J. E., & Sutcliffe J. V., (1970). River flow forecasting through conceptual models Part I: A discussion of principles, J. HYDROL, 10, 282-290

https://doi.org/10.1016/0022-1694(70)90255-6

Ouma, Y. O., Owiti, T., Kiporir, E., Kibiiy, J., y Tateishi R. (2012). Multitemporal comparative analysis of TRMM-3B42 satellite-estimated rainfall with surface gauge data at basin scales: daily, decadal and monthly evaluations. International Journal of Remote Sensing, 33(24), 7662-7684. https://doi.org/10.1080/01431161.2012.701347

Peláez, J. R. T. (2003). Facetas del cálculo hidrometeorológico y estadístico de máximos caudales. Revista de Obras Públicas: Organo profesional de los ingenieros de caminos, canales y puertos, (3430), 47-51.

Pilgrim, D. H., & McDermott, G. E. (1981, January). Design floods for small rural catchments in eastern New South Wales. In First National Local Government Engineering Conference 1981: Reprints of Papers: Reprints of Papers (pp. 138-142). Canberra: Institution of Engineers, Australia.

Pizarro, R; Gonzáles, P; Wittersheim, M; Saavedra, J.; Soto, C. (1993). Elementos Técnicos de Hidrología III. Proyecto Regional Mayor sobre uso y conservación de recursos hídricos en áreas de America Latina y el Caríbe. UNESCO-ORCYT. Editorial Universidad de Talca. Talca, Chile.

Quispe Rivas M (2020). Análisis del desempeño conceptual de Modelo Hidrológico SWAT. Proyecto de grado, para optar al Diploma Académico de Licenciatura en Ingeniería Civil, 122- 125, 177-201.

Read, L. K., & Vogel, R. M. (2015). Reliability, return periods, and risk under nonstationarity. Water Resources Research, 51(8), 6381-6398. https://doi.org/10.1002/2015WR017089

Servicio Departamental de Cuencas (2020). Manejo integral de la Cuenca Taquiña. Cochabamba, Bolivia: Gobierno Autónomo Departamental de Cochabamba.

Toté, C., Patricio, D., Boogaard, H., Van der Wijngaart, R., Tarnavsky, E., & Funk, C. (2015). Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing, 7(2), 1758-1776. https://doi.org/10.3390/rs70201758

Universidad del Valle UNIVALLE (2022). Conclusiones del Foro técnico científico "Tiquipaya Zona 0" [Online]. Recuperado de: http://www.univalle.edu/. Consultado el 12 de Agosto de 2022.

Usda, S. C. S. (1986). Urban hydrology for small watersheds. Technical release, 55, 2-6.

Vallejos, A., Saavedra, O., Escalera, A. C. (2016), Análisis de la precipitación aérea de las cuencas clave de Cochabamba, basado en tecnología satelital. Investigación & Desarrollo, 16(1), 25 - 38.

https://doi.org/10.23881/idupbo.016.1-2i

Villón Béjar, M. (2014). HidroEsta, software para cálculos hidrológicos y estadísticos aplicados a la Hidrología. Revista Digital: Matemática, Educación E Internet, 12(2). https://doi.org/10.18845/rdmei.v12i2.1678

Watson, I., & Burnett, A. D. (2017). Hydrology: An environmental approach. Routledge. https:// doi.org/10.1201/9780203751442 Williams, G. B. (1922). Flood discharges and the dimensions of spillways in India. Engineering (London), 134(9), 321-322

https://doi.org/10.1201/9780203751442

Published

May 14, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How to Cite

Evaluation of the feasibility of using satellite data in the extension of short series of precipitation for ground stations in the context of the River Taquiña Catchment - Cochabamba, Bolivia. (2025). Editorial Univalle. https://doi.org/10.52428/edit.univalle.2